Comparing Computational Power
نویسندگان
چکیده
It is common practice to compare the computational power of different models of computation. For example, the recursive functions are strictly more powerful than the primitive recursive functions, because the latter are a proper subset of the former (which includes Ackermann’s function). Side-by-side with this “containment” method of measuring power, it is also standard to base comparisons on “simulation”. For example, one says that the (untyped) lambda calculus is as powerful—computationally speaking—as the partial recursive functions, because the lambda calculus can simulate all partial recursive functions by encoding the natural numbers as Church numerals. The problem is that unbridled use of these two distinct ways of comparing power allows one to show that some computational models (sets of partial functions) are strictly stronger than themselves! We argue that a better definition is that model A is strictly stronger than B if A can simulate B via some encoding, whereas B cannot simulate A under any encoding. We show that with this definition, too, the recursive functions are strictly stronger than the primitive recursive. We also prove that the recursive functions, partial recursive functions, and Turing machines are “complete”, in the sense that no injective encoding can make them equivalent to any “hypercomputational” model.1
منابع مشابه
Unit commitment by a fast and new analytical non-iterative method using IPPD table and “λ-logic” algorithm
Many different methods have been presented to solve unit commitment (UC) problem in literature with different advantages and disadvantages. The need for multiple runs, huge computational burden and time, and poor convergence are some of the disadvantages, where are especially considerable in large scale systems. In this paper, a new analytical and non-iterative method is presented to solve UC p...
متن کاملMeasurement and Computational Modeling of Radio-Frequency Electromagnetic Power Density Around GSM Base Transceiver Station Antennas
Evaluating the power densities emitted by GSM1800 and GSM900 BTS antennas isconducted via two methods. Measurements are carried out in half a square meter grids around twoantennas. CST Microwave STUDIO software is employed to estimate the power densities in order fordetailed antenna and tower modeling and simulation of power density. Finally, measurements obtainedfrom computational and experime...
متن کاملComparing Abductive Theories
This paper introduces two methods for comparing explanation power of different abductive theories. One is comparing explainability for observations, and the other is comparing explanation contents for observations. Those two measures are represented by generality relations over abductive theories. The generality relations are naturally related to the notion of abductive equivalence introduced b...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملA computational investigation on the structural features of alkanolamine solvents for CO2 capture process from power plant flue gas
متن کامل
How to Compare the Power of Computational Models
We argue that there is currently no satisfactory general framework for comparing the extensional computational power of arbitrary computational models operating over arbitrary domains. We propose a conceptual framework for comparison, by linking computational models to hypothetical physical devices. Accordingly, we deduce a mathematical notion of relative computational power, allowing the compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logic Journal of the IGPL
دوره 14 شماره
صفحات -
تاریخ انتشار 2006